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1. Basic concepts of fluid flow

1.1 Fluids vs solids

1.2 Continuum — number density
Local thermodynamic equilibrium
Pressure, temperature
Fields — density, pressure, temperature, velocity

1.3 Streamlines, pathlines, streaklines, material lines
1.4 Fluid motion: stress and strain rate

1.5 Dimensional Analysis: Buckingham P1 Theorem

1.6 Dimensionless parameters



§1.1 fluid vs solid

A solid can resist a shear stress by a static deformation.
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The fluid, as long as the shear stress is applied, moves and deforms

continuously.
= A fluid at rest must be in a state of zero shear stress. .
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* Fluids cannot hold a shape independent of their surroundings,
because of their inability of the intermolecular forces to
maintain an unchanging angular orientation of the molecules
w.r.t. each other.

* Fluids can be

mixture, €.g. air, system with chemical reaction (£ 4 + * & 4)
or

multiphase, e.g. water + vapor (4 #7 A% ¥ 2 % ¥



§1.2 continuum

A fluid is called continuum which means its variation in properties is so
smooth that the differential calculus can be applied.

1.e. fluid properties can be thought of as varying continually in space.
e.g. a container with volume ¥ and total number of molecules N




§1.2 continuum

v" The fluid molecules are in some way randomly distributed in .
The probabilities for a molecule to located in 6%, and %, may
not be the same.

v If N is not so large that (6% )/3 is comparable or less than the
molecular spacing or the so-called mean free path,

= some 0¥ have particles, some do not.
each 0¥ sometimes has and sometimes doesn’t have particles.
can not find a p representing the density of volume 6% (¥#)

= dilute gas (gas dynamics, molecular dynamics)

v" If N is so extremely large that the average number of molecules
locating in any 0¥ is relatively large to its fluctuation, then

=> one p can characterize the density of one 6¥%(x).

= continuum
=> well defined p(x, t) 10



§1.2 continuum

Thus, if define p = mé—fj“

Where m 1is the mass of each molecule

ON 1s the number of molecules found(measured) in one
particular 6¥

gas dynamic Fluid mechanics
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Kinetic theory Example: 1atm and 300K : N, (d =0.2nm)

1 mean free path
mean free path = >
J2nrd n, _ RT
| J2nd*N, P
d = molecule dlamete'r 3 8.314 J/K - molex 300K
n, = molecules per unit volume on ( O.an)z 6107 /moIE- 10° N / M’
I for ideal gases ~234nm
RT N, at 20°C
Pressure range @ Mean free path (1) Typﬁ;LQaS

Rough vacuum | 1000 mbar - 1 mbar 6.6 -10° m - 6.6 -10° m | Viscous flow

Intermediate T i - Knudsen flow
vacuum 1 mbar - 10" mbar | 6.6 10" m-6.6 -10" m
- -3 7
High vacuum 10™ mbar - 10 6.6 102 m - 660 m Molecular flow
mbar .
Ultra high T rh B Molecular flow
vacuum e =gy

https://helderpad.com/2017/03/02/gas-flow-conductance/i2




§1.2 continuum
Example: air
(6¥)/3~107°m i.e. 6¥~10718 m3
@STR: total N~ 107 >>1

In fluid mechanics, p = 51{}Lm0 i— = p(X,y,Z1)

/

in such a way that there are still many enough molecules in 6%

Fluid mechanics 1s a macroscopic science.

13




§1.2 continuum
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§1.2 continuum

* Study the average behavior of a very large number of molecules
in the vicinity of a point in a fluid.

e Itis concerned with characteristics that can be observed and
measured on the laboratory scale.

Lift
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91.2 continuum p(Xy,zt)
¥ P(XY,zt)
T(XY,zt)
pl p2 p3 p

4

* A fluid particle 1s defined as a small mass of fluid of fixed
identity of volume §¥#~10""mm?3.

* Thermodynamic Properties: Assume all timescales and length
scales imnvolved with the molecular motions are much smaller
than the laboratory scales. (e.g. collision time, mean free path
etc.) so that a fluid subjected to sudden changes rapidly
adjusts itself toward equilibrium.

(local thermodynamic equilibrium) 0



§1.2 continuum

* Thermodynamic properties exist as point functions and follow
all the laws and state relation of ordinary equilibrium
thermodynamics (such as PV=nRT) .

* Fluid velocity u(x,y, z, t) is the mean velocity of molecules
within 6% which instantaneously surrounding point Q(X,y,2).

P(X,y,z1) density field
P(x,y,zt) pressure field
T(X,Y,zt) temperature field
U(x,Y,zt) velocity field

17



§1.2 continuum

Streamline: a curve tangential to the velocity vector everywhere

Lift
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https://www.grc.nasa.gov/WWW/K-12/airplane/foil3.html




31.3 flowlines

Steamline: a curve tangential to velocity vector everywhere

https://www.av8n.com/irro/profilol_e.html




§1.3.1 streamlines

A streamline in a flow field that 1s everywhere tangent to the
velocity for any instant of time t.

v No flow can cross a streamline.

g . ..
Streamlines may change in time. %, = 7(( St dS)

dx = (dx,dy,dz) || G = (u,v,w) =X +dX
(s)+dX

I
Xl

dx dy dz_
u v w

ds

ixdX=0 =

parameter: S dx

IC: (X, Y,2)=(X%,,Y,,2) ats=0"



§1.3.1 streamlines

Example: 0= (2x,—yt)

% ='92X = 2s

ds iy
parameter = S

dy _ ts

ds S yt = Y yoe

-
Given t,%,, Y, = Y(S)= y(x(s))

e.g. (% Y,t)=(2,1,4)
X'y’ =16 = xX’y=4

Uxds=0

(2x,—yt,0)x(dx,dy,0) =

(2xdy + ytdx)&,=0

dx__dy
2X yt

21



§1.3.2 pathlines

A pathline 1s the path or trajectory traced out by a particular
fluid particle.

parameter: t

(Xy,Z0)

time
dx
—=Uu(XV,zt
+ ~ (% y.20)
(X0, Y0, Z0, o ) %: V(X,Y,zt)
Given (Lagrangian marker) dz
E:w(x,y,z,t)

—

X=X(t;t,, %, )

—_—

parameter IC: (Xa yaz):(x()a y09z()) att =1,

22



§1.3.2 pathlines

Example: 0= (2x,—yt)
dx

—=U=2X
at

dy
LV e
dt N

= Xt = h{i]:z(t—to)

= X(t)=x,exp| 2(t—t,) ]|

= y()= oo 3¢t

~ parametric form

t=t, +11n[1]
2\ X%

X X
=5 Q = —tdt
y
= h{l] - Le-g)
Yo 2

Given t, X, Y, = Y(t)= y(x(t))

23
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§1.3.3 streaklines

A streakline 1s a line in a flow field which 1s the locus of particles

which have earlier passed through a prescribed point.
given

/\
X=X(t;t), %))

parameter

Pl: (X,Y,2)
P2: (X,Y,2)
P3: (X,Y,2)

(X,Y,,2) at time =t

(X,,Y,,2,) at time =t
(X,Y;,2,) at time =t

(X5 Yo, %) at time =t,,
(X5 Yy, 2 ) at time=t,,
(X5 Yy Z,) at time =t

24

Pl: (XY,2)
P2: (x,Y,2)
P3: (Xx,Y,2)

(% ¥,2) = (%Yo %))



§1.3.3 streaklines

Example: u = (2x, —yt)

X
ln(g :2(t—t0)
)
h{l < Ty
YO/ 2

streakline: parameter = {

Given t,X,,y, = Y(to) = Y(X(to))

Pathline: parameter =t

Given t), X, Y, = Y(t)=y(x(t))

{32
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31.3.4 material lines

time =t

S

Lagrangian marker

Material line: parameter = §

X=X, (&)exp :Z(t —t, )]
y= yo(ﬁ)exp_—%(tz - )}

Given ’[,’[(),{X0 (€), Y, (&)} = Y(§)= y(x(i))

26




Example:

u= Xx(1+2t)
V=Y

streakline at time t=1

time t=1

streamline at

pathline passing (1,1) at time (t,)=1

27



Steady flows

~ time-independent fields
~ A streamline, pathline, streakline passing through a same
reference point correspond to a same curve.

-_'__,_,_—F'd_'_'—_ .'_'-_'_'_“-!—n_
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https://www.av8n.com/irro/profilol_e.html
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1.4 fluid motion

y y
A A
N\
{ N
NI
N
> X > X
translation rotation
y y
A A
/
)
> X > X
angular deformation linear deformation

motion= translation + solid rotation + deformation
29



1.4.1 Strain rate

_-=B
Consider a fluid element A_ ,,,,,, /
Suy - 5t’| |
u —u+a—u8y T ¢ ! [
/ dy A S I
oV ,' I
Va :V-I——Sy 6}7 do, 'I
dy ! e
ou y II I S
uczu+&6x L’X N - ﬁ”C'&
) Dl :
v |
V. =V+—0X Sx
oX 4,
— 0y - ot L
o0 = tan 00, = ou, -ot — dy =au.8t % =(xY)
Oy + 0V, - ot oy oy %, = (X, y+y)
oV
. ——0X- ot X =(X+0X%,Y)
3B ~ tan 8 = — e O 9K ~ NV s
OX + U - ot OX OX .



1.4.1 Strain rate

Consider a fluid element A’ ,,,,,,,
Su, - 5t'|
Strain rate: TTA I," ]
/
_1(684-60():1 &+a_u 5)7 506/,
2 ot 2(0x oy II
y / -
L, -7 o0
Rotational rate: X I :
Ox
B .o oo _l(ﬂ_@J
2 8t 2(ox oy
dy
0P = N st



1.4.2 Stress
oF

Stress 1. = lim —~

o sA -0 6A<

first subscript : the normal direction of the plane on which
the stress acts

second subscript : the direction in which the stress acts

the state of stress at a point

GXX
T, O
TZX



1.4.2 Stress

B A stress components 1s positive when the
y direction of the stress component and the
T plane on which it acts are both positive or
both negative.

B Normal stress: oyy, 0yy, 0;,

I
|
|
I
: B Shear stress: Tyy, Tyz, Tzx»> Tyx> Tzy» Txz
I
|

Surface forces (stress): the force acting between molecules on the
surface and molecules outside the fluid particle in the surrounding
medium, 1i.e. intermolecular forces.

Shear stress causes continuous shear deformation 1n a fluid.
33



1.4.2 Stress Symmetry

d*e

= 1nertial moment - ——

dt?

inertial moment ~ pOXJy - (f)X2 + 8y’ )

As 0x,0y = 0:

). X
2

(’cxyf)y) -2

oy

; (7,,8x)

0

34



1.4.3 Newtonian fluids

A Newtonian fluid 1s one where there is a linear relationship between
stress and strain-rate. E.g. water, air , gasoline under normal condition.

_ (U av
BT Gy Tox) T

=—(P-AV-U)+ 2u?
L 1s called the shear viscosity coefficient.
A is called the second viscosity.
K=2U/3+A is called the bulk viscosity (=0, Stokes’ hypothesis).

K = 0 for dilute monatomic gases

K = 3U for water

negligible unless volume expansion 1s huge.
A= —2u/3 35



1.4.3 Newtonian fluids

G, +6,+G, 2 - .
s 3W =P- (7» + ?Hj (V-4)  (mechanical pressure)

P : thermodynamic pressure

K=A + % > (0 by thermodynamic second law

B Shear viscosity u strongly depends on temperature
11 asT T gasses
ul asT 1 liquid

B weakly depends on pressure

B Kinetic viscosity (momentum diffusivity) v = W/p



1.4.4 non-Newtonian fluids ou oV
Ty =M —+=—
Newtonian fluids: L = constant Y dy oX

Non-Newtonian fluids : mostly due to very large fluid molecules

» dilatant : deformationrate 1 = w1
e.g BRBIER ~ P RRIER
» pseudo plastic : deformationrate 1 = U |
e.g. polymer solution ~ * Jf:
» Bingham plastic : behaves like a solid when the shear stress is less
than some yielding stress; behaves like a fluid thereafter

=

e'g' ? solid Bingham plastic & dilatant J37
A 1rs J &

F Newtonian

pseudo plastic 447

shear stress

https://www.youtube.com
/watch?v=G10p_ 1yG6IQ

deformation Fate_

37



1.4.4 non-Newtonian fluids

» thixotropic : U | as time T which shear stress keeps constant.
e.g. Wik
» rheopectic : U 1 as time 1
https://www.youtube.com/watch?v=S8gP3yWsloc

» viscoelastic : fluids partially return to their original shape after
the shear stress 1s released.

Remark: viscosity~ molecular interactions
~ lead to viscous drag (T,,)
~ cause momentum transfer

38



Unit of viscosity

s-N s-kg-m/s’ k
Ty =N @+& Kl= m gm;n/ =s-grjn
v dy OX
N kg m nv
[0]=17 V]| & |- -
p| smkg s
ou ov| 1
A b R
dy ox| s
e.g. 1 atm, 20°C
air u=1.8-10kg/m-s v=1.51-10°m’/s

water M=10"kg/m's v=1.01-10°m’/s
mercury 1=1.5-10"kg/m-s v=1.16-10"m’/s

39



1.4.5 Inviscid flow vs Viscous flow

e inviscid flow: u = 0, no inter-molecular forces
 1nviscid fluids do not exist; all fluids posses viscosity

* the assumption of u = 0 can simplify analysis and get meaningful
results.

* Inany viscous flow, the fluid in contact with a solid boundary has
the same velocity as the boundary itself.

~ nonslip boundary condition

fluids at the belt has the same velocity as that of the belt (plate)
|—>

—
—l

—/ VISCOUS

inviscid

v A 4 vV V

T 7 o7 o sold wall

flows at wall have zero velocity
40



1.4.5 Viscous flow

Us
R —
e —
D
.

O

inviscid region U
—
Uo -
> - __---
=3 u
boundary layer
X1 X2

Streamlines parallel to the plate?

No! v> 0 for mass conservation.

41



1.4.5 Inviscid flow vs Viscous flow

inviscid VISCOUS .
separation

Viscous
total drag = pressure drag
+ viscous drag

Inviscid

A stagnation point
* velocity 1 from A to B; | from B to C

* pressure | from Ato B; 7 from C to B

* symmetry = no pressure drag

* 1nviscid = no shear stress = no viscous drag

42



1.4.5 Viscous flow

adverse pressure gradient

“streamlining ” shape = reduce adverse pressure gradient
= delay the separation

= reduce pressure drag

= viscous drag increases (. surface increases)

= net drag reduced

Lift

- Positive Pressure Area
i




1.5 Dimensional Analysis

Buckingham Pi Theorem

~ give suggestions for possible grouping of related parameters such
that the groups of parameters, not the parameters themselves, are
the key factors determining the behaviors of the given system.

44



dimensions and units

* A dimension 1s the measure by which physical variable is expressed
quantitatively,

e.g. length, time, temperature, force, torque,......

* A unit is a particular way of attaching a number to a dimension

e.g. force: [F] Newton, kg- m/s’, Ibf, ...

time: [t] second, minute, hour, day, ...

* Primary dimensions: those dimensions which basically express all
observable physical quantities and are independent from each other
(none of them be measured in terms of any combination of the
others).

¢.g. {mass, time, length, temperature, electric field} ={M AL, T...... }

or {force, time, length, temperature, electric field} ={F,t, L, T.....}



1.5 Dimensional Analysis - Buckingham Pi Theorem
Given a physical problem and

q = (0.0, or F(g,0,.......,0,)=0

\ )
T Y

dependent n-1 indep. variables

variable
* Let m be the minimum number of independent dimensions required to
specify the dimensions of all the parameters g4, g5...... , Q-

* Then these n parameters can be grouped into N-m independent
dimensionless parameters, I1 parameters, such that

~ requirement of consistency of dimension ~ e



Example 1:

g, lh

AP:P_Patm:f(pag?h)
[F]_N _kg-m/s’ kg
M| kg
[p]__L3}_m3
‘L]l m
ol-| 5 |- 5
[h]=[L]=m =3




[1=AP-p*g°h°
=% (5
m-s*)lm )\ &
kg: 1+a=0
m: —1-3a+b+c=0
S: —2-2b=0
a=b=c=-1

[T=AP-p~'g"'h”

J

F(I1)=0

= 11 = constant

AP
—— = constant

pgh

AP o< pgh

48



Example 2:

@

Wanted: drag acting on a moving sphere in
a stationary fluid

F=1D,U,p,n) n=>
; - m —
I1 =F -p*D* _F_:N:kg.? m=3
= F/pu’D? D]=[L]=m n-m=2
‘L] m
2 Ul=|=|=—
IT, =u-p=D>U* V] _t} S
=u/pUD :[M}:k_g
LTl
F/PU D” = f(u/pUD) [M]:[M}:k_g
Lt -S 49



Dimensional Analysis - Buckingham Pi Theorem

Vel i
oU’D? 3 (pUDj unknown, determined by experiments

investigate the effect of different values of 1/pUD on F/pU*D’
instead of effects of individual parameter p, U, D, or 1

goal 1 (reduce number of investigated parameters)

goal 2 (model flow vs. real flow)

Two flows may be involved with different p, U, D, or i but have
the same value of u/pUD
= must have the same value of F/pU*D’

Ee B o i e e )
ol = o i~ = 22 - 22
pUD model pUD real pU D model pU D real

50



Example 3:

Lift

parameter symbol unit
Lift per span L N/m=kg/s?
Angle of attack o
' size of body @ m
n—83 (e.g. chord)
m=
Freestream velocity m/s
SIT’s! Freestream density kg/m3
Freestream viscosity LU, kg/m.s
Freestream speed a., m/s
of sound
gravity g m/s?

51



Lift

Example 3:

I, = - = C,_ = lift coefficient

sitive Pressure Area

ipUzc

I1, = o = angle of attack

II, =—=—=— = Re = Reynolds number

Ma = Mach number

U. _
a_
( j = Froude #= Fr

(o, Re,Ma, Fr)

52



Example 4:

parameter symbol

Thrust T

n=6 Propeller diameter @ m

m=3 Propeller speed @ 1/s

p) ' -

e Flight speed V, m/s
Freestream density kg/m?
Freestream viscosity L, kg/m.s

Okulov V.L., Sorensen J.N ., van Kuik G.A.M. Development of the optimum rotor theories.
Moscow-lzhevsk: R&C Dyn., 2013. 120 p. ISBN 978-5-93972-957-4.
was translated in English of by interpreters of Institute Termophysics, Novosibirsk, Russia



Example 4:

Ll = T2 - = C; = thrust coetficient
>p.n"D
. DV,
BL = P-DN PV _ pe = Reynolds number
K. K.
IT, = Mg advance ratio
nD

C =C; (Re,J)

54



Geometric similarity: (length scale)
* model and prototype be the same shape and all linear dimensions

f the model be related to corresponding dimensions of the prototype by a
constant scale factor.

Kinematic similarity: (Iength scale+time scale)

* velocities at corresponding points are in the same direction and
are related in magnitude by a constant scale factor.

= streamline patterns related by a constant scale factor
Dynamic similarity: (length scale + time scale+ force scale)

* two flows have force distributions such that identical types of forces are
parallel and are related in magnitude by a constant scale factor at all
corresponding points.

55



To achieve “Dynamic similarity” between a real flow and 1ts model
flow, all but one of these II—parameters must be duplicated.

to be determiner | ! }same for both the real flow and
the model flow

Only lf (HZ)model - (H2)rea|
(H3 )model - (H3 )real

(H n—m)model - (H n—m)real

then (Hl)model - (Hl)real

56



In the lab, to ensure dynamic similarity, 1.e.

E(XD y? Z)model o< |_:>(Xc> yc’ Zc)real

N

one requires corresponding point
geometric similarity

and kinematic similarity ((x, y, ), o< U(X,Y.,2Z).
everywhere
Remark: At least make important I1’s in the same; others are

made up 1n some other ways such as analysis, experimental
measurement, etc. Reasonable results can be still possible.

57



1.6 Dimensionless parameters

U U’
inertial force per unit volume ~pdu/dt~ p——~ p—
d pdu/dt~p L/U L
: AAP AP
pressure force per unit volume ~ ~
A-L L
ou

ATy Nua—yN pu

friction force per unit volume ~ .
A-L L L

graVity force per unit volume ~ PO inertial force ~ pU 2 / L
pressure force ~ AP/L

friction force ~ pU /1

gravity force ~ pg

58




1.6 Dimensionless parameters
inertial effect _ pU?/L _pUL_ L)y
viscous effect uU/L> p LU

(1) Reynolds number = Re=

Re <« 1: viscous diffusion speed >> convection speed

Lift

viscous effect >> inertial effect

= 1ignore convective term

= Stokes flows

Re>1: convection speed >> viscous diffusion speed

As Re— 0, can we 1gnore viscous force? No!!
The larger Re, the thinner region (boundary
layer) 1s affected by the viscous effect.

cases of L— 0 # cases of u=0
1.e. The case =0 1s a singularity 59




laminar vs turbulent

Reynolds experiments: fixed diameter of the pipe

small velocity

water
flow

large velocity

water
flow

dye

dye remains 1n a single filament
little dispersion little mixing

B P

dye stretched, twisted breaks
strong dispersion, strong

mixing

velocity signal

velocity signal /V\/L\/\)\"/‘/\/\/\/\ﬂ/"""

laminar: smooth
easier to handle, analytic

tim

turbulent: random
most of cases, empirical
time

small Re= %

\Y

large Re= ub
A%



1.6 Dimensionless parameters inertial force ~ pU? /L

flow speed U

(i1) Mach number = M = pressure force ~ AP/L

sound speed a
gravity force ~ pg

sound speed a= dap friction force ~ uU /L’
dp
o Y putl pUZ/L-L

~(dP/dp)  p(dP/dp)C”  p(dP/dp)L’

inertial force

~ force required for compressibility

61



incompressible : force required for compressibility >>1

sound speed a= /? >>1 = M <<]
P

in general, M <0.3 = approximately incompressible

subsonic flow: M<1
sonic flow : M=1
supersonic flow : M>1

hypersonic flow: M>5

62



1.6 Dimensionless parameters

(R4t mber Eu = pressure force _ AP/L AP

inertial force %pU ) /L % Nk

also called*‘pressure coefficient ”(Cp)

- - P-P
(iv) cavitation number =Ca= 1 v
Pl

P, = vapor pressure of the liquid fluid

1
inertial force jz

gravity force

5 ) -

(v) Froude number = Fr :(




1.6 Dimensionless parameters

(vi) Weber number =We=

inertial force ~ (pU/L)-L’ pUL

surface tension force o-L )

o = surface tension force per unit length

incompressible viscous flow <

-

\

, laminar
internal flows
turbulent

laminar
external flows
turbulent

64
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